Adaptive Network Traffic Prediction Algorithm based on BP Neural Network
نویسندگان
چکیده
With the rapid development of Internet technology, the network now has a large size and high complexity, and consequently the network management is becoming increasing difficult and complexity, so traffic forecast play a more and more role in network management. With a large amount of real traffic data collected from the actual network, an adaptive network traffic prediction algorithm based on BP neural network was proposed in this paper, it use an adaptive learning rate method to adjust the learning rate according to total error changing trend of decreased or increased and the difference of changing; and then it corrects the weights in each layers according to forward and reverse calculation. Simulation results show that, compared with the traditional BP neural network, our algorithm has better performance in the prediction results, and has smaller error.
منابع مشابه
Prediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کاملTraffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملMulti-step Prediction Algorithm of Traffic Flow Chaotic Time Series Based on Volterra Neural Network
The accurate traffic flow time series prediction is the prerequisite for achieving traffic flow inducible system. Aiming at the issue about multi-step prediction traffic flow chaotic time series, the traffic flow Volterra Neural Network (VNN) rapid learning algorithm is proposed. Combing with the chaos theory and the Volterra functional analysis, method of the truncation order and the truncatio...
متن کاملAn Adaptive Fuzzy Neural Network Model for Bankruptcy Prediction of Listed Companies on the Tehran Stock Exchange
Nowadays, prediction of corporate bankruptcy is one of the most important issues which have received great attentions among academia and practitioners. Although several studies have been accomplished in the field of bankruptcy prediction, less attention has been devoted for proposing a systematic approach based on fuzzy neural networks. The present study proposes fuzzy neural networks to predi...
متن کاملAdaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis
The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...
متن کامل